

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Home

The File Storage plugin is giving you the possibility to store files in virtually and kind of storage backend. This plugin is wrapping the Gaufrette [https://github.com/KnpLabs/Gaufrette] library in a CakePHP fashion and provides a simple way to use the storage adapters through the StorageManager class.

See this list of included storage adapters.

Storage adapters are an unified interface that allow you to store file data to your local file system, in memory, in a database or into a zip file and remote systems. There is a database table keeping track of what you stored were. You can always write your own adapter or extend and overload existing ones.

Documentation

	Requirements

	Installation

	How it works

	How to Use it

	The Storage Manager

	Included Event Listeners

	Legacy Event Listeners

	Path Builders

	Getting a file path and URL

	Adapter Configurations

	Local Filesystem

	Amazon S3

	Amazon S3 (Legacy)

	OpenCloud (Rackspace)

	Azure

	Image processing

	Image Storage and Versioning

	The Image Version Shell

	The Image Helper

Tutorials

	Quick Start

	Replacing Files

Quick-Start

Add this to your composer.json. Imagine is optional but you'll need it if you want to process images.

{
 "require": {
 "burzum/cakephp-file-storage": "dev-3.0",
 "burzum/cakephp-imagine-plugin": "dev-3.0",
 "cakephp/migrations": "dev-master"
 }
}

app/Config/file_storage.php

There is a good amount of code to be added to prepare everything. In theory you can put all of this in bootstrap as well but to keep things clean it is recommended to put all of this in a separate file.

This might look like a lot things to do but when this is done storing the files will work immediately and you have a very flexible and powerful storage system configured.

use Aws\S3\S3Client;
use Burzum\FileStorage\Storage\Listener\BaseListener;
use Burzum\FileStorage\Storage\StorageUtils;
use Burzum\FileStorage\Storage\StorageManager;
use Cake\Core\Configure;
use Cake\Event\EventManager;

// Instantiate a storage event listener
$listener = new BaseListener(
 'imageProcessing' => true, // Required if you want image processing!
 'pathBuilderOptions' => [
 // Preserves the original filename in the storage backend.
 // Otherwise it would use a UUID as filename by default.
 'preserveFilename' => true
]
);
// Attach the BaseListener to the global EventManager
EventManager::instance()->on($listener);

Configure::write('FileStorage', [
// Configure image versions on a per model base
 'imageSizes' => [
 'ProductImage' => [
 'large' => [
 'thumbnail' => [
 'mode' => 'inbound',
 'width' => 800,
 'height' => 800
]
],
 'medium' => [
 'thumbnail' => [
 'mode' => 'inbound',
 'width' => 200,
 'height' => 200
]
],
 'small' => [
 'thumbnail' => [
 'mode' => 'inbound',
 'width' => 80,
 'height' => 80
]
]
]
]
]);

// This is very important! The hashes are needed to calculate the image versions!
StorageUtils::generateHashes();

// Lets use the Amazon S3 adapter here instead of the default `Local` config.
// We need to pass a S3Client instance to this adapter to make it work
$S3Client = new S3Client([
 'version' => 'latest',
 'region' => 'eu-central-1',
 'credentials' => [
 'key' => 'YOUR-AWS-S3-KEY-HERE',
 'secret' => 'YOUR-SECRET-HERE'
]
]);

// Configure the S3 adapter instance through the StorageManager
StorageManager::config('S3', [
 'adapterOptions' => array(
 $S3Client,
 'YOUR-BUCKET-NAME-HERE', // Bucket
 [],
 true
),
 'adapterClass' => '\Gaufrette\Adapter\AwsS3',
 'class' => '\Gaufrette\Filesystem'
]);

If you did everything right you can now run this command from your app:

bin/cake storage store <some-file-to-store-here> --adapter S3

If you did everything right your should see some output like this:

If you're not familiar with the CakePHP shell and running into problems with the shell, not the plugin itself, please read this [http://book.cakephp.org/3.0/en/console-and-shells.html] first!

File successfully saved!
UUID: ebb21e79-029d-441d-8f2e-d8c20ca8f5a9
Path: file_storage/18/ef/b4/ebb21e79029d441d8f2ed8c20ca8f5a9/<some-file-to-store-here>

It is highly recommended to read the following sections to understand how this works.

	Included Event Listeners

	Image Storage and Versioning

	Specific Adapter Configurations

app/Config/bootstrap.php

Now include the file_storage.php setup in your app/Config/bootstrap.php

include('file_storage.php');

Load the Helper

namespace App\View;
class AppView extends View {
 public function initialize() {
 parent::initialize();
 $this->loadHelper('Burzum/FileStorage.Image');
 }
}

Theoretical model setup

namespace App\Model\Table;

use Cake\ORM\Table;

class Products extends Table {
 public function initialize() {
 parent::initialize();
 $this->hasMany('ProductImages', [
 'className' => 'ProductImages',
 'foreignKey' => 'foreign_key',
 'conditions' => [
 'ProductImages.model' => 'ProductImage'
]
]);
 $this->hasMany('Documents', [
 'className' => 'FileStorage.FileStorage',
 'foreignKey' => 'foreign_key',
 'conditions' => [
 'Documents.model' => 'ProductDocument'
]
]);
 }
}

namespace App\Model\Table;

use Burzum\FileStorage\Model\Table\ImageStorageTable;

class ProductImagesTable extends ImageStorageTable {
 public function uploadImage($productId, $entity) {
 $entity = $this->patchEntity($entity, [
 'adapter' => 'Local',
 'model' => 'ProductImage',
 'foreign_key' => $productId
]);
 return $this->save($entity);
 }
 public function uploadDocument($productId, $entity) {
 $entity = $this->patchEntity($entity, [
 'adapter' => 'Local',
 'model' => 'ProductDocument',
 'foreign_key' => $productId
]);
 return $this->save($entity);
 }
}

Products Controller

namespace App\Controller;

class ProductsController extends AppController {
 // Upload an image
 public function upload($productId = null) {
 $entity = $this->Products->ProductImages->newEntity();
 if ($this->request->is(['post', 'put'])) {
 $entity = $this->Products->ProductImages->patchEntity(
 $entity,
 $this->request->data
);
 if ($this->Products->ProductImages->uploadImage($productId, $entity)) {
 $this->Flash->set(__('Upload successful!'));
 }
 }
 $this->set('productImage', $entity);
 }
}

Products Upload View

View for the controller action above Products/upload.ctp:

echo $this->Form->create($productImage, array(
 'type' => 'file'
));
echo $this->Form->file('file');
echo $this->Form->error('file');
echo $this->Form->submit(__('Upload'));
echo $this->Form->end();

Displaying the Images

Read about the Image helper

Replacing Files

A common task is to replace one existing image with a new image.

Assuming we have a model table called DocumentsTable that is associated by ahasOne association with the ImageStorageTable table. The associations alias is Images. Your form should look like this:

echo $this->Form->file('image.file');
echo $this->Form->error('image.file');

if (isset($document) && !empty($document['Image']['id'])) {
 echo $this->Image->display($document->image);
 echo $this->Form->input('image.old_file_id', array(
 'type' => 'hidden',
 'value' => $document->id,
));
}

The the trick here is the old_file_id. The FileStorageTable table, which ImageStorageTable extends, is checking for that field by calling FileStorageTable::deleteOldFileOnSave() in FileStorageTable::afterSave().

So all you have to do to replace an image is to pass the old_file_id along with your new file data.

Just make sure that nobody can tamper your forms with unwanted data! If somebody can do that they can pass any id to delete any file! It is recommended to use the Security component [http://book.cakephp.org/3.0/en/controllers/components/security.html] of the framework to avoid that.

Getting a file path and URL

The path and filename of a stored file in the storage backend that was used to store the file is generated by a path builder. The event listener that stored your file has used a path builder to generate the path based on the entity data. This means that if you have the entity and instantiate a path builder you can build the path to it in any place.

The plugin already provides you with several convenience short cuts to do that.

Be aware that whenever you use a path builder somewhere, you must use the same path builder and options as when the entity was created. They're usually the same as configured in your event listener.

Getting it from an entity

If you're using an entity from this plugin, or extending it they'll implement the PathBuilderTrait. This enables you to set and get the path builder on the entities.

Due to some limitations of the CakePHP core [http://api.cakephp.org/3.1/source-class-Cake.ORM.Table.html#1965] you can't pass options to the entity when calling Table::newEntity(). As a workaround for that you'll have to set it manually:

$entity->pathBuilder('PathBuilderName', ['options-array' => 'goes-here']);
$entity->path(); // Gets you the path in the used storage backend to the file
$entity->url(); // Gets you the URL to the file if possible

Getting it using the storage helper

The storage helper is basically just a proxy to a path builder. The helper takes two configuration options:

	pathBuilder: Name of the path builder to use.

	pathBuilderOptions: The options passed to the path builders constructor.

Make sure that the options you pass and the path builder are the same you've used when you uploaded the file! Otherwise you end up with a different path!

// Load the helper
$this->loadHelper('Burzum/FileStorage.Storage', [
 'pathBuilder' => 'Base',
 // The builder options must match the options and builder class that were used to store the file!
 'pathBuilderOptions' => [
 'modelFolder' => true,
]
]);

// Use it in your views
$url = $this->Storage->url($yourEntity);

// Change the path builder at run time
// Be carefully, this will change the path builder instance in the helper!
$this->Storage->pathBuilder('SomePathBuilder', ['options' => 'here']);

How to Use It

Before you continue to read this page it is recommended that you have read about the Storage Manager before.

The following text is going to describe two ways to store a file. Which of both you choose depends at the end on your use case but it is recommended to use the events because they automate the whole process much more.

The basic idea of this plugin is that files are always handled as separate entities and are associated to other models. The reason for that is simple. A file has multiple properties like size, mime type and other entities in the system can have more than one file for example. It is considered as bad practice to store lots of file paths as reference in a table together with other data.

This plugin resolves that issue by handling each file as a completely separate entity in the application. There is just one table file_storage that will keep the reference to all your files, no matter where they're stored.

Preparing the File Upload

This section is going to show how to store a file using the Storage Manager directly.

For example you have a Report table and want to save a pdf to it, you would then create an association like:

public function initialize(array $config)
{
 $this->hasOne('PdfFiles', [
 'className' => 'Burzum/FileStorage.PdfFiles',
 'foreignKey' => 'foreign_key',
 'conditions' => [
 'PdfFiles.model' => 'Reports'
]
]);
}

In your add.ctp or edit.ctp views you would add something like this.

echo $this->Form->create($report, ['type' => 'file']);
echo $this->Form->input('title');
echo $this->Form->file('pdf_files.file'); // Pay attention here!
echo $this->Form->input('description');
echo $this->Form->submit(__('Submit'));
echo $this->Form->end();

Make sure your form is using the right HTTP method [http://book.cakephp.org/3.0/en/views/helpers/form.html#changing-the-http-method-for-a-form]!

Store an uploaded file using Events

The FileStorage plugin comes with a class that acts just as a listener to some of the events in this plugin. Take a look at ImageProcessingListener.php.

This class will listen to all the ImageStorage model events and save the uploaded image and then create the versions for that image and storage adapter.

It is important to understand that nearly each storage adapter requires a little different handling: Most of the time you can't treat a local file the same as a file you store in a cloud service. The interface that this plugin and Gaufrette provide is the same but not the internals. So a path that works for your local file system might not work for your remote storage system because it has other requirements or limitations.

So if you want to store a file using Amazon S3 you would have to store it, create all the versions of that image locally and then upload each of them and then delete the local temp files. The good news is the plugin can already take care of that.

When you create a new listener it is important that you check the model field and the event subject object (usually a table object inheriting \Cake\ORM\Table) if it matches what you expect. Using the event system you could create any kind of storage and upload behavior without inheriting or touching the model code. Just write a listener class and attach it to the global EventManager.

List of events

Events triggered in the ImageStorage model:

	ImageVersion.createVersion

	ImageVersion.removeVersion

	ImageStorage.beforeSave

	ImageStorage.afterSave

	ImageStorage.beforeDelete

	ImageStorage.afterDelete

Events triggered in the FileStorage model:

	FileStorage.beforeSave

	FileStorage.afterSave

	FileStorage.afterDelete

Event Listeners

See this page for the event listeners that are included in the plugin.

Handling the File Upload Manually

You'll have to customize it a little but its just a matter for a few lines.

Note the Listener expects a request data key file present in the form, so use echo $this->Form->input('file'); to allow the Marshaller pick the right data from the uploaded file.

Lets go by this scenario inside the report table, assuming there is an add() method:

public function add() {
 $entity = $this->newEntity($postData);
 $saved = $this->save($entity);
 if ($saved) {
 $key = 'your-file-name';
 if (StorageManager::adapter('Local')->write($key, file_get_contents($this->data['pdf_files']['file']['tmp_name']))) {
 $postData['pdf_files']['foreign_key'] = $saved->id;
 $postData['pdf_files']['model'] = 'Reports';
 $postData['pdf_files']['path'] = $key;
 $postData['pdf_files']['adapter'] = 'Local';
 $this->PdfDocuments->save($this->PdfDocuments->newEntity($postData));
 }
 }
 return $entity;
}

Later, when you want to delete the file, for example in the beforeDelete() or afterDelete() callback of your Report model, you'll know the adapter you have used to store the attached PdfFile and can get an instance of this adapter configuration using the StorageManager. By having the path or key available you can then simply call:

StorageManager::adapter($data['PdfFile']['adapter'])->delete($data['PdfFile']['path']);

Insted of doing all of this in the table object that has the files associated to it you can also simply extend the FileStorage table from the plugin and add your storage logic there and use that table for your association.

Why is it done like this?

Every developer might want to store the file at a different point or apply other operations on the file before or after it is stored. Based on different circumstances you might want to save an associated file even before you created the record its going to get attached to, in other scenarios like in this documentation you might want to do it after.

The $key is also a key aspect of it: Different adapters might expect a different key. A key for the Local adapter of Gaufrette is usually a path and a file name under which the data gets stored. That's also the reason why you use file_get_contents() instead of simply passing the tmp path as it is.

It is up to you how you want to generate the key and build your path. You can customize the way paths and file names are build by writing a custom event listener for that.

It is highly recommended to read the Gaufrette documentation for the read() and write() methods of the adapters.

How it works

The whole plugin is build with clear Separation of Concerns [https://en.wikipedia.org/wiki/Separation_of_concerns] in mind: A file is always an entry in the file_storage table from the app perspective.

The table is the reference to the real place of where the file is stored and keeps some meta information like mime type, filename, file hash (optional) and size as well. You associate the file_storage table with your model using the FileStorage or ImageStorage model from the plugin via hasOne, hasMany or HABTM.

When you upload a file you save it to the FileStorage model through the associations, Documents.file for example. The FileStorage model dispatches then file storage specific events. The listeners listening to these events process the file and put it in the configured storage backend using adapters for different backends and build the storage path using a path builder class.

[image: File Storage abstract flowchart]

Image Versioning

You can set up automatic image processing for the ImageStorage table. To make the magic happen you have to use the ImageStorage table (it extends the FileStorage table) for image file saving.

All you need to do is basically use the image model and configure versions on a per model basis. When you save an ImageStorage table entity it is important to have the 'model' field filled so that the script can find the correct versions for that model.

Configure::write('FileStorage', array(
 'imageSizes' => array(
 'GalleryImage' => array(
 'c50' => array(
 'crop' => array(
 'width' => 50, 'height' => 50
)
),
 't120' => array(
 'thumbnail' => array(
 'width' => 120, 'height' => 120
)
),
 't800' => array(
 'thumbnail' => array(
 'width' => 800, 'height' => 600
)
)
),
 'User' => array(
 'c50' => array(
 'crop' => array(
 'width' => 50, 'height' => 50
)
),
 't150' => array(
 'crop' => array(
 'width' => 150, 'height' => 150)
)
),
)
)
);

\Burzum\FileStorage\Lib\FileStorageUtils::generateHashes();

Calling generateHashes() is important, it will create the hash values for each versioned image and store them in Media.imageHashes in the configuration.

If you don't want to have the script to generate the hashes each time it's executed, it is up to you to store it persistent. This plugin just provides you the tools.

Image files will end up wherever you have configured your base path.

/ModelName/51/21/63/4c0f128f91fc48749662761d407888cc/4c0f128f91fc48749662761d407888cc.jpg

The versioned image files will be in the same folder, which is the id of the record, as the original image and have the truncated hash of the version attached but before the extension.

/ModelName/51/21/63/4c0f128f91fc48749662761d407888cc/4c0f128f91fc48749662761d407888cc.f91fsc.jpg

You should smylink your image root folder to APP/webroot/images for example to avoid that images go through php and are send directly instead.

Extending and Changing Image Versioning

It is possible to totally change the way image versions are created. You'll just have to extend or create new listeners and attach them to the global EventManager.

Included Event Listeners

For the deprecated event listeners please click here

Introduction

The included event listeners will throw a StorageException when something went wrong. It's your duty to handle them. Also you can configure a logger to the storage log scope to filter logs by this scope.

Each listener has a configured Path Builder, check the [path builder documentation] to see what they do and what their purpose is.

To change the path builder config for a listener check what path builder the listener is using and pass the path builder config to the constructor of the listener:

$listener = new LocalListener([
 'pathBuilderOptions' => [
 // options go here
]
]);

If you want to implement your own listeners you'll have to extend them from the AbstractListener and implement the event callbacks.

Local Listener

The local listener will store files by default in this kind of path:

<basePath>/<model>/<randomPath>/<uuid>/<uuid>.<extension>

Example:

/var/www/my_app/files/Documents/05/51/68/38f684612c6f11e5a2cb0800200c9a66/38f684612c6f11e5a2cb0800200c9a66.jpg

The listener is using by default the LocalPathBuilder to generate the path.

The reason for the UUID folder name is simply to ensure it is unique per file and it makes it easy to store versions of the same file in the same folder.

AWS S3 Listener

There is no new AWS S3 listener yet, you can either use the old legacy listener or write your own based on the new listeners. A contribution of a new listener is highly welcome!

Legacy Local File Storage Listener

This listener mimics the behavior of the deprecated LocalFileStorageEventListener.

Installation

Make sure you've checked the requirements first!

Using Composer

Installing the plugin via Composer [https://getcomposer.org/] is very simple, just run in your project folder:

composer require burzum/file-storage:1.1.*

Database Setup

You need to setup the plugin database using the official migrations plugin for CakePHP [https://github.com/cakephp/migrations].

cake migrations migrate -p Burzum/FileStorage

If you're coming from the CakePHP 2.0 version of the plugin, the support for the CakeDC Migrations plugin has been dropped in favor of the official migrations plugin [https://github.com/cakephp/migrations].

CakePHP Bootstrap

Add the following part to your applications config/bootstrap.php.

use Cake\Event\EventManager;
use Burzum\FileStorage\Lib\FileStorageUtils;
use Burzum\FileStorage\Lib\StorageManager;
use Burzum\FileStorage\Event\ImageProcessingListener;
use Burzum\FileStorage\Event\LocalFileStorageListener;

// Only required if you're *NOT* using composer or another autoloader!
spl_autoload_register(__NAMESPACE__ .'\FileStorageUtils::gaufretteLoader');

$listener = new LocalFileStorageListener();
EventManager::instance()->on($listener);

// For automated image processing you'll have to attach this listener as well
$listener = new ImageProcessingListener();
EventManager::instance()->on($listener);

Adapter Specific Configuration

Depending on the storage backend of your choice, for example Amazon S3 or Dropbox, you'll very likely need additional vendor libs and extended adapter configuration.

Please see the Specific Adapter Configuration page of the documentation for more information about then. It is also worth checking the Gaufrette documentation for additonal adapters.

Running Tests

The plugin tests are set up in a way that you can run them without putting the plugin into a CakePHP3 application. All you need to do is to go into the FileStorage folder and run these commands:

cd <file-storage-plugin-folder>
composer update
phpunit

Included Event Listeners

THESE LISTENERS ARE DEPRECATED!

Please use the new listeners from the \Burzum\FileStorage\Storage\Listener namespace!

LocalFileStorageListener

The file and folder structure it will generate looks like that:

basePath/files/xx/xx/xx/<uuid>/<uuid>.<extension>

ImageProcessingListener

This listener will create versions of images if Configure::read('Media.imageSizes.' . $model); is not empty. If no processing operations for that model were specified it will just save the image.

This adapter replaces LocalImageProcessingListener and currently supports the Local and AmazonS3 adapter.

The file and folder structure it will generate looks like that:

basePath/images/xx/xx/xx/<uuid>/<uuid>.<extension>

Versioned images will look like that

basePath/images/xx/xx/xx/<uuid>/<uuid>.<hash>.<extension>

	For the Local adapter basePath is the value configured for this adapter, by default the TMP constant.

	For AmazonS3 the basePath will be the bucket and Amazon S3 URL prefix.

xx stands for a semi random alphanumerical value calculated based on the given file name if the Local adapter was used.

Some important notes about the path the processor generates:

The path stored to the database is not going to be the complete path, it won't add the filename for a reason.

The filename is generated by the processor on the fly when adding/deleting/modifying images because the versions are build on the fly and not stored to the database. See ImageProcessingListener::_buildPath().

LocalImageProcessingListener (deprecated)

The LocalImageProcessingListener is deprecated, use ImageProcessingListener.

Included storage adapters

The following adapters are coming along with the Gaufrette library that is used by this plugin as a base.

	Apc

	Amazon S3

	ACL Aware Amazon S3

	Azure

	Doctrine DBAL

	Dropbox

	Ftp

	Grid FS

	In Memory

	Local File System

	MogileFS

	Open Cloud

	Rackspace Cloudfiles

	Sftp

	Zip File

Check the adapter folder [https://github.com/KnpLabs/Gaufrette/tree/master/src/Gaufrette/Adapter] of the Gaufrette lib for a complete list.

If you need another adapter that is not included you can implement it yourself or try searching the web first.

Migrating from CakePHP 2

Here is a list of things that have changed:

	The plugin doesn't any longer use the configuration namespace Media but instead uses now the more appropriate namespace FileStorage.

	The plugin is not using the CakeDC Migrations plugin any more but the official CakePHP Migrations plugin [https://github.com/cakephp/migrations].

	Lib\Utility\StorageUtils has been moved to Storage\StorageUtils.

	FileStorageTable::fileExtension() has been removed, use pathinfo($path, PATHINFO_EXTENSION) instead.

	FileStorageTable::stripUuid() has been removed, use events to handle the file saving and AbstractStorageEventListener::stripDashes().

	FileStorageTable::tmpFile() has been removed, use events to handle the file saving and AbstractStorageEventListener::createTmpFile().

	FileStorageTable::tmpFile() has been moved to AbstractStorageEventListener::fsPath(), use events to handle the file saving.

	ImageStorageTable::hashOperations() has been removed, use StorageUtils::hashOperations().

	ImageStorageTable::generateHashes() has been removed, use StorageUtils::generateHashes().

	ImageStorageTable::ksortRecursive() has been removed, use StorageUtils::ksortRecursive().

	Former UploadValidatorBehavior::uploadArray() has been moved to StorageUtils::uploadArray().

Path Builders

Path builders are classes that are used to build the storage paths for a file based on the information coming from the file_storage table.

A path builder should but doesn't have to build a unique path per entity based on all the data available in the entity.

They implement at least these methods:

	filename: filename

	path: relative path

	fullPath: absolute path

	url: URL to the file

Each of them will take a FileStorage entity as first argument. Based on that entity it will generate a path depending on the logic implemented in the path builder.

The reason for this is to separate or share, just as needed, the path building logic between different storage systems. For example S3 differs in it's first part of the path, it's using a bucket while locally you usually have something like a base path instead of the bucket.

If you want to change the way your files are saved extend the BasePathBuilder class.

Using path builders

The path builders constructors take a single argument, an array. Every path builder should extend BasePathBuilder and provide at least some of the config options of it as well.

$pathBuilder = new BasePathBuilder([
 'prefix' => 'some-prefix-for-the-path'
]);
$pathToEntity = $pathBuilder->path($entity);

The PathBuilderTrait

The trait allows you to add two methods to any class:

	PathBuilderTrait::createPathBuilder() will return a new instance of a path builder.

	PathBuilderTrait::pathBuilder() will get/set a path builder from the PathBuilder::$_pathBuilder property.

If you want to configure a default path builder just add it's name to your config if your object is using the InstanceConfigTrait for example:

protected $_defaultConfig = [
 'pathBuilder' => 'Base',
 'pathBuilderOptions' => [
 'modelFolder' => true
]
];

public function __construct(View $view, array $config = []) {
 parent::__construct($view, $config);

 $this->pathBuilder(
 $this->config('pathBuilder'),
 $this->config('pathBuilderOptions')
);
}

Or set your own configuration options up:

public function __construct(array $properties = [], array $options = []) {
 $options += [
 'pathBuilder' => null,
 'pathBuilderOptions' => []
];
 parent::__construct($properties, $options);
 if (is_string($options['pathBuilder'])) {
 $this->pathBuilder(
 $options['pathBuilder'],
 $options['pathBuilderOptions']
);
 }
}

Path builders included in the plugin

BasePathBuilder

This is the path builder all other BP's should inherit from. But if you like to write your very own BP you're free to implement it from the ground up but you'll have to use the PathBuilderInterface.

The BasePathBuilder comes with a set of configuration options:

[
 'stripUuid' => true,
 'pathPrefix' => '',
 'pathSuffix' => '',
 'filePrefix' => '',
 'fileSuffix' => '',
 'preserveFilename' => false,
 'preserveExtension' => true,
 'uuidFolder' => true,
 'randomPath' => 'sha1'
]

Requirements

	CakePHP 3.0+

	Gaufrette Library (included as composer dependency)

Optional but required for image processing:

	The Imagine Image processing plugin [https://github.com/burzum/cakephp-imagine-plugin] if you want to process and store images.

Specific Addapter Configuration

Gaufrette does not come with a lot detail about what exactly some adapters expect so here is a list to help you with that.

But you should not blindly copy and paste that code, get an understanding of the storage service you want to use before!

Keep in mind that the instructions here might be outdated as external APIs and SDKs can and probably will change at some time! If this happens please create an issue ticket on Github and include the way to configure the adapter.

Local Filesystem

By default the StorageManager already comes with a pre-configured adapter instance for the local file system adapter.

The first array element of the adapterOptions config key is TMP because the tmp folder and the logs folder should be the only writeable place in a proper configured application. The reason for that is simply to make it work out of the box without issues. You definitely want to change that path for your application.

StorageManager::config('Local', [
 'adapterOptions' => [TMP, true],
 'adapterClass' => '\Gaufrette\Adapter\Local',
 'class' => '\Gaufrette\Filesystem'
]);

You should create another folder outside your src folder and symlink [https://en.wikipedia.org/wiki/Symbolic_link] it if you need it to be present somewhere in webroot. For example use this as the base path for your local files. The following code is an example:

'adapterOptions' => [ROOT . DS . 'file_storage', true],

Symlink Linux Example:

 ln -s /home/myuser/projects/my-app/webroot/img/uploads /home/myuser/projects/my-app/file_storage

Symlink Windows Example:

mklink /D "C:\webstack\htdocs\my-app\webroot\img\uploads" "C:\webstack\htdocs\my-app\file_storage"

AmazonS3 - AwsS3 Adapter

Get the SDK from here https://github.com/aws/aws-sdk-php or get it via composer aws/aws-sdk-php. If you're not using composer you'll have to add it to your own autoloader or load it manually.

use Aws\S3;

$S3Client = \Aws\S3\S3Client::factory(array(
 'key' => 'YOUR-KEY',
 'secret' => 'YOUR-SECRET'
));

StorageManager::config('S3Image', array(
 'adapterOptions' => array(
 $S3Client,
 'YOUR-BUCKET-HERE',
 array(),
 true
),
 'adapterClass' => '\Gaufrette\Adapter\AwsS3',
 'class' => '\Gaufrette\Filesystem')
);

AmazonS3 - AmazonS3 Adapter (legacy)

This adapter is legacy code, you should use the AwsS3 adapter instead!

Get the SDK from here http://github.com/amazonwebservices/aws-sdk-for-php and load the sdk.class.php file from where ever you cloned the SDK. Or get it via composer amazonwebservices/aws-sdk-for-php.

require_once(APP . 'Vendor' . DS . 'AwsSdk' . DS . 'sdk.class.php');

CFCredentials::set(array(
 'production' => array(
 'certificate_authority' => true,
 'key' => 'YOUR-KEY',
 'secret' => 'YOUR-SECRET'
)
)
);
$s3 = new AmazonS3();

StorageManager::config('S3', array(
 'adapterOptions' => array(
 $s3,
 'YOUR-BUCKET-HERE'
),
 'adapterClass' => '\Gaufrette\Adapter\AmazonS3',
 'class' => '\Gaufrette\Filesystem')
);

OpenCloud (Rackspace)

Get the SDK from here http://github.com/rackspace/php-opencloud and add it to your class autoloader

define('RAXSDK_SSL_VERIFYHOST', 0);
define('RAXSDK_SSL_VERIFYPEER', 0);

$connection = new \OpenCloud\Rackspace(
 'https://lon.identity.api.rackspacecloud.com/v2.0/', // Rackspace Auth URL
 array(
 'username' => 'YOUR-USERNAME',
 'apiKey' => 'YOUR-API-KEY'
)
);

// LON (London) or DFW (Dallas)
$objstore = $connection->ObjectStore('cloudFiles', 'LON');

StorageManager::config('OpenCloudTest', array(
 'adapterOptions' => array(
 $objstore,
 'test1',
),
 'adapterClass' => '\Gaufrette\Adapter\OpenCloud',
 'class' => '\Gaufrette\Filesystem')
);

Azure

Attention: This adapter config was provided by a third party. If you encounter any trouble with it please report it and the best submit a working example.

$connectionString = "DefaultEndpointsProtocol=https;AccountName=;AccountKey=";
$blobRestProxy = new Gaufrette\Adapter\AzureBlobStorage\BlobProxyFactory($connectionString);
$blobRestProxy->create();

StorageManager::config('AzureBlobStorage', [
 'adapterOptions' => [
 $blobRestProxy,
 'gatewayfiles'
],
 'adapterClass' => '\Gaufrette\Adapter\AzureBlobStorage',
 'class' => '\Gaufrette\Filesystem'
]);

The Image Helper

The plugin comes with an Image helper that makes it easy to display the images generated by the ImageStorage model and the events that process the images.

namespace App\View;
class AppView extends View {
 public function initialize() {
 parent::initialize();
 $this->loadHelper('Burzum/FileStorage.Image');
 }
}

In your views you can now access all your image versions, which you have declared before in your config through the helper.

echo $this->Image->display($product['image'], 'small');

If you want the original image just call the display() method without a version.

echo $this->Image->display($product['image']);

If you want to get only the URL to an image you can call imageUrl().

$imageUrl = $this->Image->imageUrl($product['image'], 'small');
echo $this->Html->image($imageUrl);

Options for display() and imageUrl()

The third argument of both methods is an option array, right now it has only one option to set.

	fallback: Optional, can be boolean true or string. If boolean true it will use placeholder/<YOUR-VERSION>.jpg as place holder. If string it will use that as image.

The Image Version Shell

The shell comes with three pretty much self explaining commands: generate, remove and regenerate.

Generate

Arguments

	model (required): Value of the model property of the images to generate.

	version (required): Image version to generate.

Options

	storageTable: The storage table for image processing you want to use.

	limit: Limits the amount of records to be processed in one batch.

	keep-old-versions: Use this switch if you do not want to overwrite existing versions.

Example:

bin\cake imageVersion generate Avatar t150

Remove

Arguments

	model (required): Value of the model property of the images to generate.

	version (required): Image version to generate.

Options

	storageTable: The storage table for image processing you want to use.

	limit: Limits the amount of records to be processed in one batch.

Example:

bin\cake imageVersion remove Avatar t150

Regenerate

Arguments

	model (required): Value of the model property of the images to generate.

Options

	storageTable: The storage table for image processing you want to use.

	limit: Limits the amount of records to be processed in one batch.

	keep-old-versions: Use this switch if you do not want to overwrite existing versions.

Example:

bin\cake imageVersion regenerate Avatar

The Storage Manager

The Storage Manager class is a singleton class that manages a collection of storage adapter instances.

To configure adapters use the StorageManager::config() method. First argument is the name of the config, second an array of options for that adapter. The options array keys can be different for each adapter, depending on the storage system it connects to.

StorageManager::config('Local', array(
 'adapterOptions' => array(TMP, true),
 'adapterClass' => '\Gaufrette\Adapter\Local',
 'class' => '\Gaufrette\Filesystem')
);

To invoke a new instance using a before set configuration call.

$Adapter = StorageManager::adapter('Local');

You can also call the adapter instances methods like this

StorageManager::adapter('Local')->write($key, $data);

Alternatively you can pass a config array as first argument to get an instance using these settings that is not in the configuration.

To delete configs and by this the instance from the StorageManager call

StorageManager::flush('Local');

If you want to flush all adapter configs and instances simply call it without the argument.

StorageManager::flush();

There will be no adapter instance left after this, you must add a new config to use any adapter.

Adapter Configuration

Some adapters require a more or less complex configuration and setup depending on their API and provided SDK that the adapter class is using. Please see the specific adapter configuration section of the documentation for some of them.

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_images/file-storage-flowchart.jpg
request objsct comes in

Developer has to set adapter”

and “model to the file storage data
and calls Table::save(with the eniity.

v

FileStorage / ImageStorage Table Object]
Triggers the FileStorage events.

v

The Eventlisteners check fthey can process the upload
based on the model and adapter.

2
Listener saves or deletes afile. | ——>{ PathBuilder class builds fil and path nami
depending onthe svent | forthe storage backend.
v

StorageManager wil Ioad the adapter based
on the passed adapter config and iy to store the file.

Storagshanger coulfl saveidelets the file?
4

success
failure

BurzumFileStorage\Storage\StorageException
is thrown,
The developer has to handle the exception,
its not catched by the plugin

The FileStorage table gets updated
with the Info from the event istensr
ifthe file was successfully stored.

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

